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Abstract

In this paper, we propose a new algorithm for scoring debate arguments. By
adding novel features such as transitional phrase types and syllable count, and
by systematically testing feature combinations, our algorithm outperforms the
state-of-the-art essay scoring algorithm and the state-of-the-art argument scoring
algorithm. The final model is applied in Rebuta, an online debate platform that
scores user-contributed arguments and displays the arguments for each side sorted
by score, allowing users to read the best arguments first.

1 Introduction

1.1 Motivation

Debates on popular sites such as Facebook, YouTube, and Twitter, often degenerate into name-calling
and trolling without offering a productive space to resolve difficult questions. Questions are met with
inconclusive responses, even on specialized question-answer sites such as Quora and Stack Overflow.
With increasing quantity of content, it is difficult for people to engage in productive, collaborative
conversations and debates on the internet without getting bogged down in spammy, irrelevant noise.

1.2 Overview of Work Done

Our major contributions are two-fold as follows:

(1) Using a combination of syntactic and content features, we have developed a machine learning
algorithm to automate evaluation of debate arguments. Our algorithm outperforms the state-of-the-art
style-based algorithm[9] by 31.06% and the state-of-the-art content-based algorithm[10] by 6.54%
on the labeled debate dataset.

(2) We have created the application framework for Rebuta, an online debate platform that would
make use of this argument scoring algorithm. Any user-contributed argument receives a score on
a scale of 1-10 in the context of the debate topic. By providing immediate feedback, the platform
encourages and incentivizes users to contribute high-quality content. We hope to build a meaningful
space for discussion that caters to the needs of its users.
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2 Related Work

2.1 Grading Writing Style in Essays

In 2012, the Hewlett Foundation held a Kaggle competition on automated essay scoring. The
foundation provided a set of around 13000 essays with scores. One of the best performing algorithms
was developed by Manvi Mahana, Mishel Johns, and Ashwin Apte of Stanford University[9]. Their
approach featurized word count, sentence count, part of speech counts, comma count, punctuation
count, and quotation mark count. A forward feature selection algorithm was used to choose the
best combination of features, and predictions were made with a linear regression model. Their
model achieved a kappa score of 0.703 on the essay set and 0.531 on the debate set. Other similar,
high-performing algorithms that focused featurizing words and grammar include Shihui Song and
Jason Zhao’s submission[12]. As acknowledged by Mahana, Johns, and Apte, these features capture
the writing style and syntax well but fail to judge essays in which the context is important.

2.2 Grading Argument Strength in Student Essays

A quality contribution to a debate should be not only well-written but offer a strong argument. The
latest work in the field of modeling argument strength comes from Isaac Persing and Vincent Ng in
2015[10]. Persing and Ng’s approach uses features such as part of speech N-grams, semantic frames,
transitional phrases, coreference, prompt agreement, argument component predictions, and argument
errors. They developed an argument corpus of essays on 10 prompts annotated with numerical scores.
However, this corpus was not free for download, so for the purpose of comparing performances, we
applied their algorithm to our essay and debate sets. Persing and Ng’s algorithm achieved kappa
scores of 0.701 and 0.654 on the essay and debate sets respectively.

Jill Burnstein and Daniel Marcu’s research on identifying theses and conclusions in student essays[5]
is also relevant to evaluating . The presence of a strong thesis and conclusion suggests good structure
in an argumentative piece of writing. [13]

2.3 Sentiment Analysis of Social Media Content

Unlike essays and articles, the writing found on social media websites tends to be informal, short, and
often charged with emotion. Research on sentiment analysis of Twitter, a platform dedicated to concise
140-character messages, tackles the issue of deducing emotion from social media content. Song
Feng et al analyzed a corpus of tweets classified as positive or negative sentiment by corresponding
emoticons[7]. Their model was tailored to the particularities of social media content.

2.4 Analysis of Ideological Online Debates

Swapna Somasundaran and Janyce Wiebe evaluated the sentiment and arguing opinions to identify
stances in ideological debates [11][6]. They restricted their data set to argumentative writing and
tailored featurization to target key words and phrases that are commonly found in written debates.
They established connections between certain words and indications of argument, sentiment, and the
stance of the writer on the debate.
A key part of Somasundaran and Wiebe’s work was identifying and collecting product and political
debate data. As our works overlap in areas of application, we appreciate the political debate set that
they provided.

2.5 Debate Platform Competitors

Existing online debate platforms include

1. debate.org - Back in 2007, debate.org was released as a tool for debating. It was acquired in
2010 for 15x ROI (according to the founder’s LinkedIn), and has a respectable userbase of
300,000 cumulative users. The site can not really be considered popular or mainstream, and
the technology and interface are out-of-date.[3]

2. createdebate.com - Also released around the 2008 election, Create Debate is another debating
site that has a decent userbase with just less than 100,000 total users. Like debate.org, the
technology and interface are dated.[1]
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3. Moot app - A more recent attempt is the Moot iOS App, which gives users a way to post
opinions on different sides, but doesn’t allow meaningful interactions between users in
building arguments or counterarguments. [2]

4. slant.co - A website originally targeted toward the tech community, slant.co has grown in
the past few months to include fashion and other topics. Slant allows users to add "pros" and
"cons" to arguments and to upvote other users’ contributions. Our original approach was to
create a website with an interface similar to slant.co but we have adapted our approach since
slant.co has rapidly developed to fill the niche in the market.[4]

3 Algorithm Design

3.1 Overview

The objective of our algorithm is to provide a ranking similar to that of a human grader based on how
useful an argument is to a debate. We measure performance using kappa score which is a measure
of inter-grader agreement on a particular set of data. This was the metric used in the Kaggle essay
scoring competition to gauge the accuracy of the scoring algorithms.

In addition, we used 5-fold cross validation for calculating the kappa scores for each model to prevent
overfitting. Using 5-fold cross validation as opposed to just a singular training and test set was
important because we would be doing an exhaustive search using a subset of the features. By using
5-fold cross validation, the more generalized models will do better and thus reduce the chance of
statistical flukes (e.g. a model performs abnormally well because when sampling thousands of models,
there is likely to be events performing several standard deviations better just by chance).

3.2 Features

The full list of features tested are as follows:

1. Word count
2. Long word count
3. Noun frequency
4. Verb frequency
5. Comma frequency
6. Adjective frequency
7. Adverb frequency
8. Character count
9. Punctuation count

10. Quotation marks
11. Sentence count
12. Word length
13. Exclamation marks
14. Syllable count
15. Flesch-Kincaid Reading Ease - higher scores indicate material that is easier to read; lower

numbers mark passages that are more difficult to read
16. Flesch-Kincaid Grade Level - same as above except scaled to present score as a grade

level
17. Transitional Phrase count
18. Transitional Phrase frequency
19. Bag of Words - trained on the most common words from all the training data
20. Transitional Phrase type frequency - 12 different types (each one used as a feature)

(e.g. addition, consequence, diversion, etc.)
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Figure 1: The algorithm is implemented as scorer.py, which encompasses 20 features. The darker
green blocks represent features that were selected for the final model. Only one transitional phrase
type, diversion, was selected.

The first 16 features are based on using syntax and writing style while the last 4 features are based
on scoring the argument. Bolded features were the novel features that our team added. Most of the
syntactic features were from the Kaggle competition and most of the argument scoring features are
from Persing and Ng’s study on argument strength[10].

3.3 Methodology

With 31 features, there are 300,540,195 to choose 15 features. Thus, there are restrictively many(over
a billion) possible combinations of features to test. While each individual combination of features
took several hours to test on our computers, this was reduced to a matter of minutes on a server
with code optimized to reuse previous computations. To select features, we followed a methodology
similar to that of Mahana, Johns, and Apte[9]. Our algorithm used a script to add one feature at a time
and check if the kappa score improved. If it did improve the model, it was added to a list of potential
features. After running this script several times with different randomizations, we were able to select
all 12 possible contributing features to the best model (word count, character count, punctuation
count, quotation marks, sentence count, syllable count, bag of words, addition, consequence, contrast,
direction , and diversion transitional phrase types).

After narrowing down the list to 12 features, we used another script to iterate through all possible
combinations of these remaining features. The same bag of words model was blended each time to
reduce variation and computation time. From this exhaustive search, we determined that the best
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performing model used the word count, character count, punctuation count, syllable count, diversion
transitional phrase type, and the bag of words model.

3.4 Data

We tested on two data sets because the essay data set was readily available with scores by expert
graders. This also enabled us to compare against the Kaggle competition winners in essay scoring.
After testing on this initial data set, we labeled a set of debate arguments on gun control and measured
the algorithms’ performance on these arguments.

3.4.1 Scored Essay Set

For this data set, there are eight essay sets. Each of the sets of essays was generated from a single
prompt. Selected essays range from an average length of 150 to 550 words per response. Some of
the essays are dependent upon source information and others are not. All responses were written
by students ranging in grade levels from Grade 7 to Grade 10. All essays were hand graded and
were double-scored. Each of the eight data sets has its own unique characteristics. The variability is
intended to test the limits of our scoring engine’s capabilities.

3.4.2 Scored Debate Set

We downloaded a data set from Dr. Swapna Somasundaran with 1069 posts made by users of an
online forum. Each post was a response to a debate on gun control. The data was not labeled with
scores for argument quality, so we labeled the posts using a specific grading rubric. The first 50 posts
were labeled by three graders in order to calibrate the rubric. The inter-rater agreement with the
ground truth, which was the average of the three graders’ scores, for these posts was 0.684.

Score Expectations

1 Troll comments. Statement(s) of useless facts only. Multiple unrelated
argumentative sentences with no explanation.

2
Statement(s) of facts only which implies an argument. Unsuccessful
attempt at constructing argument: multiple related statements or
arguments that do not really support one another.

3 Attempt at an argument with supporting sentences/explanations, but not
convincing due to weak logic, lack of evidence, etc.

4

Argument with good but incomplete support (for instance, making a
two-part claim but only defending one part). Good support =
explanations, quotes. Or, semantically complete but incohesive
argument.

5 Argument with close to adequate support.

6 Argument with adequate support for all aspects of the argument.

7 Complex argument(s) with adequate support.

8
More complex argument, with convincing supporting statements that
address opposing viewpoints. Or, there are multiple points that support
the overarching argument being made.

9 Contains all the properties of the previous score in addition to being
exceptionally well written and well supported.

10 Outstandingly well-written, complex, fully developed, fully supported
argument.

3.5 Performance

To measure performance of our model, we would compare to two baselines: the model which resulted
from the results of the Kaggle essay scoring competition[9] and the model from Persing and Ng on
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argument strength[10]. For the model from the Kaggle competition, the authors took a systematic
approach to adding features by starting with the best performing feature and adding them one at a
time and verifying whether or not each feature improved the previous model. To replicate their model
on the debate data, we went through the same process with our automated script to determine the
baseline model. The features chosen by this process were character count, word count, nouns, verbs,
adjectives, adverbs, comma count, punctuation count and quotation count. The overall kappa score
was 0.531415 which was lower than the single feature bag-of-words kappa score.

Next to replicate Persing and Ng’s model as a baseline, we combined bag-of-words, transitional
phrases frequency, and parts-of speech frequencies. They also had coreference and prompt agreement
as features. While we did implement coreference as a feature, we could not use either of these in our
framework since we were scoring debate arguments instead of essays and there were no prompts or
reference labels so we could not measure coreference or prompt agreement. Although their paper
originally used a SVM, we used a Random Forest Regressor instead because the kappa score was
better (> .05) than when a SVM was used. This baseline far outperformed the essay scoring baseline
with a kappa score of 0.65375.

At first, because we were computationally constrained to our computers, we replicated the systematic
approach to adding features from the paper based on the Kaggle competition. This led to the best score
of 0.65877 which was only 0.77% better than the state-of-the-art argument scoring baseline. The
model used the features character count, word count, nouns, verbs, adjectives, adverbs, comma count,
punctuation count, quotation count, transitional phrase frequency, bag of words. Once we had access
to a high performance computing server, we could run this approach with different parameters to the
Random Forest Regressor in order to find the relevant features as described in 3.3. By automating the
testing process and adding in the transitional phrase types, the kappa scored improved over 6% to
the current best kappa score of 0.6964957006. Since this kappa score was greater than that of the
average trained human scorer, the potential for improvement is limited by the accuracy of the ground
truth labels. By crowdsourcing the debate scoring or by interactively teaching the crowd to label the
data[8], we may be able to achieve better ground truth labels.

Figure 2: The model we developed perform better than the state of the art algorithms as well as
outperforming human graders in terms of accuracy. The "Best Model" had over a 6.54% improvement
over the "State of the Art Argument Scoring" algorithm.
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Kappa Scores Standard Deviation

Human Graders 0.684 0.172

Best Model 0.697 0.023

State of the Art Argument Scoring 0.653 0.028

State of the Art Essay Scoring 0.531 0.039

Bag of Words 0.609 0.027

Word Count 0.327 0.048

Character Count 0.322 0.075

4 App Design

http://59c9f39c.ngrok.io

4.1 Overview

The Rebuta app is designed primarily with a website interface. We identify three modules: scoring,
auth, and debate. As discussed in the Algorithm Design, the scoring module consists of the scoring
algorithm and scores debate arguments on a scale of 1-10. The auth module includes user authentica-
tion. We use this system to authenticate users and provide security. In addition, we identify authors
publicly to encourage more genuine content. Finally, we have the debate module, which includes all
functionality for working with debate data. We describe the auth and the debate modules in further
detail.

4.2 User Authentication Module with Facebook

Our authentication is built using the OAuth standard. This framework works by asking a third-party
identity and API provider to authenticate users. This provider then returns a key providing access to
the core APIs for a user. This is distinct from OpenID, another authentication framework. OpenID
provides a certificate from a third-party identity provider instead of a key. We use Facebook to
provide our authentication. This has the benefit in that users are identified on Rebuta with their real
names. The OAuth framework is implemented using facebook-sdk. User data is stored in a MySQL
database. We also provide a front-end UI that allows users to login, logout, and view their profile
information.

4.3 Debate Module

The debate module supports creation and viewing of debate data on the Rebuta website. The debate
data is stored in a MySQL database. See the Appendix for a detailed schema of the database. The
Rebuta website directs users to a dashboard, which shows all debates as well as their positions and
the scores of each position. Clicking on a debate shows the posts for each position in the debate.
The user then has the option to upvote or downvote arguments as well as add a new argument to the
debate. See the screenshots in the Appendix for an illustration.
The website runs on Python Flask with a MySQL backend. The webpage is rendered using the Jinja2
templating language with HTML. Each endpoint on the website routes to a specific template as well
as reads or writes from the database. For example, /debate/1 will route to the debate with id 1 in the
database. These requests are all performed using GET. We use POST requests to submit data from
forms, including creating a new debate and adding a post.

7

http://59c9f39c.ngrok.io


Module: scoring

Module: auth

Module: debate

UI: dashboard

UI: debate

UI: add debate

UI: add argument
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Post

Debate 
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Debate 
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Debate 
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Debate 
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Debate 
Post

Debate 
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Figure 3: The three backend components of the Rebuta website are the scoring, auth, and debate
modules. The scoring module is the final argument scoring model built by out algorithm, while the
auth and debate modules allow users to log in, create debates, and add arguments.

5 Future work

5.1 Addressing the Cold Start Problem in New Debate Topics

Bag-of-words featurization is a major component of our algorithm: using bag-of-words as the lone
feature yields a kappa score of 0.691 on the essay set and 0.609 on the debate set. However, this
feature requires existing essays and debate arguments on the same topic to build a dictionary and

8



train the model. When a new debate topic is created on Rebuta, there will not be existing arguments
to train on. We would like to explore the possibility of using news articles from reputable sources
to aid in bag-of-words featurization. For most debate topics that would appear on a social media
platform, there are likely to be existing news articles that are relevant.

5.2 Using the Scoring Algorithm on Comments

Bloggers and website moderators often have the overwhelming task of going through dozens, hun-
dreds, or even thousands of comments and often the first comment is most easily viewed instead of
the most relevant comments. While having an upvote system solves the relevancy problem, hateful or
derogatory statements may be upvoted instead of useful comments. Our algorithm could be applied
to a blog tool to solve this problem. In addition, our algorithm is easily adaptable such that by scoring
several comments, moderators can teach the algorithm what writing style or set of words is preferable.
Thus, the moderators’ job becomes easier since there would be more automation involved. It would
be interesting to create a module using our algorithm which uses this approach.

5.3 Improving the Website

The current Rebuta website is static and allows user interaction only in terms of redirecting to other
pages. For example, when a user wants to create a new post, we redirect the user to a different
endpoint on the website. We would like to add JavaScript and JQuery to the website to allow
dynamic user interaction. This will also enable features such as upvoting and downvoting as well as
commenting on posts.

6 Conclusion

We have developed a new algorithm for scoring debate arguments that incorporates syntactic features
(word count, character count, punctuation count, syllable count) as well as content features (bag-
of-words, diversion type transitional phrases) and uses a random forest to produce a final model.
Using the Kappa score metric, we have shown that our algorithm outperforms the state-of-the-art
style-based algorithm[9] by 31.06% and the state-of-the-art content-based algorithm[10] by 6.54%.
Our algorithm performs remarkably well on the gun control training data, and we intend to confirm
the results on other debate data in the future.

We have also created a product that facilitates online debates by automatically scoring debate posts
and providing an online interface for users to add content. The Rebuta website at its current stage is an
minimum viable product for debating online. Users are able to create debates with multiple positions,
contribute to a position in a particular debate, and receive scores for posts from our algorithm. Each
position for a particular debate also has a total score, allowing users to quickly determine which
position is dominant. The website encourages users to contribute high-quality content by providing
immediate feedback on user posts as well as associating users with their real names from Facebook.
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7 Appendix

7.1 Gitlab Repositories

Model Training and Algorithm:

https://gitlab.com/midnightbedlamites/automated-essay-scoring.git

Website: https://gitlab.com/alphaz99/rebuta.git

7.2 Model Modules

Module Name Description/
Function

Authorship Technology
used

Workload Other issues (e.g.
complexity)

Automated
Testing and
Cross Valida-
tion

Model Train-
ing

Justin Leong,
Rahul Bachal,
Christina Lin

Python,
sklearn,
numpy, pickle,
itertools

220 lines exhaustive search
(also had versions for
greedy search that
were not included)

Model Train-
ing, Blending,
and Scoring

Model Train-
ing

Rahul Bachal,
Justin Leong

Python,
sklearn,
numpy, pickle

200 lines used for testing in-
dividual features and
hard coded combina-
tions of features

Bag of Words Feature Rahul Bachal Python,
sklearn

50 lines Long time to train
model - just included
same bag of words
model and blended it
with other features for
efficient testing

Word, Charac-
ter, Comma,
Quote, Punc-
tuation, and
Sentence
Counts

Features Justin Leong,
Christina Lin

Python 40 lines O(n) for each feature
where n is the size of
the input for feature
extraction

Parts of
Speech
Frequency

Features Justin Leong Python, nltk 80 lines Extremely slow to la-
bel individual parts of
speech - did not im-
prove model

Flesch-
Kincaid
Reading
Level, Read-
ing Ease,
Syllable
Count

Feature Christina Lin Python, nltk,
nltk.corpus.
cmudict

80 lines N/A

Transitional
Phrases (by
type)

Features Justin Leong Python 100 lines fast but many features
(12 different types)

Kappa Scor-
ing

Scores
Inter-rater
agreement

Kaggle Com-
petition,
Justin Leong

Python, Mat-
lab, R

300 lines implemented by con-
test judges
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7.3 Website Modules

Module
Name

Description/
Function

Authorship Technology
used

Workload
(lines)

Other issues (e.g.
complexity)

Auth User Authenti-
cation and
Security

Rahul Bachal,
David Qu, Justin
Leong, Christina
Lin

OAuth,
facebook-sdk

100 lines Integration with Face-
book App

Dashboard
Frontend

UI design, UI
implementa-
tion

Christina Lin Flask,
Bootstrap

50 lines UI design

Debate
Frontend

UI design, UI
implementa-
tion, frontend
integration

Rahul Bachal,
Christina Lin

Flask,
Bootstrap

200 lines UI design, using
Jinja2 templating to
integrate HTML with
Flask

Debate
Backend

Backend for
Debates

Rahul Bachal,
Christina Lin

Flask,
MySQL

200 lines Flask helper func-
tions to access data

Users DB Table:
users

Rahul Bachal MySQL 12 lines N/A

Debates DB Table:
debates

Rahul Bachal MySQL 5 lines N/A

Debate
Positions

DB Table: de-
bate_positions

Rahul Bachal MySQL 8 lines N/A

Debate
Posts

DB Table:
posts

Rahul Bachal MySQL 9 lines N/A

7.4 DB Schema

DROP TABLE IF EXISTS posts;
DROP TABLE IF EXISTS users;
DROP TABLE IF EXISTS debate_positions;
DROP TABLE IF EXISTS debates;

CREATE TABLE users (
user_id INTEGER NOT NULL AUTO_INCREMENT,
auth_id VARCHAR(255) NOT NULL, -- Facebook identifier
first_name VARCHAR(255) NOT NULL,
last_name VARCHAR(255) NOT NULL,
created DATETIME NOT NULL,
updated DATETIME NOT NULL,
profile_url VARCHAR(255) NOT NULL,
access_token VARCHAR(255) NOT NULL,
PRIMARY KEY (user_id),
UNIQUE (auth_id)

);

CREATE TABLE debates (
debate_id INTEGER NOT NULL AUTO_INCREMENT,
debate_name VARCHAR(255) NOT NULL,
PRIMARY KEY (debate_id)

);

CREATE TABLE debate_positions (
position_id INTEGER NOT NULL AUTO_INCREMENT,
debate_id INTEGER NOT NULL,
position_name VARCHAR(255) NOT NULL,
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position_description TEXT NOT NULL,
PRIMARY KEY (position_id),
FOREIGN KEY (debate_id) REFERENCES debates(debate_id)

);

CREATE TABLE posts (
post_id INTEGER NOT NULL AUTO_INCREMENT,
debate_id INTEGER NOT NULL,
position_id INTEGER NOT NULL,
post_text TEXT NOT NULL,
post_author INTEGER NOT NULL,
post_score INTEGER NOT NULL,
PRIMARY KEY (post_id),
FOREIGN KEY (debate_id) REFERENCES debates(debate_id),
FOREIGN KEY (position_id) REFERENCES debate_positions(position_id),
FOREIGN KEY (post_author) REFERENCES users(user_id)

);

CREATE VIEW debate_position_scores AS
SELECT debate_id, position_id, SUM(post_score) AS total_score

FROM posts
GROUP BY debate_id, position_id;

7.5 Screenshots

Figure 4: Landing page prompts users to log in with Facebook. This page is displayed if a user tries
to access any page of the Rebuta site without being logged in.
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Figure 5: Once logged in, the home page is the dashboard, which features a feed that displays all
debates. Clicking on a debate takes the user to the debate page.

Figure 6: The debate page has two columns that display debate arguments sorted by score. An initial
score is assigned by the algorithm, and users can click to add upvotes and downvotes that affect the
total score. To add an argument, the user can click the "Add an argument" button.
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Figure 7: After clicking the "Add an argument" button, the user is brought to a page where s/he may
type a response and choose a side on which the response will appear.
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